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A solution describing the spatial evolution of small-amplitude instability waves and 
their associated sound field of axisymmetric supersonic jets is found using the method 
of matched asymptotic expansions (see Part  1 ,  Tam & Burton 1984). The inherent 
axisymmetry of the problem allows the instability waves to  be decomposed into 
azimuthal wave modes. In  addition, i t  is found that because of the cylindrical 
geometry of the problem the gauge functions of the inner expansion, unlike the case 
of two-dimensional mixing layers, are no longer just powers of e .  Instead they contain 
logarithmic terms. To test the validity of the theory, numerical results of the solution 
are compared with the experimental measurements of Troutt (1978) and Troutt & 
McLaughlin (1982). Two series of comparisons at Strouhal numbers 0.2 and 0.4 for 
a Mach-number 2.1 cold supersonic jet are made. The data compared include hot-wire 
measurements of the axial distribution of root-mean-squared jet centreline mass- 
velocity fluctuations and radial and axial distributions of near-field pressure-level 
contours measured by microphones. The former is used to  test the accuracy of the 
inner (or instability-wave) solution. The latter is used to verify the correctness of the 
outer solution. Very favourable overall agreements between the calculated results and 
the experimental measurements are found. These very favourable agreements 
strongly suggest that  the method of solution developed in Part 1 paper is indeed valid. 
Furthermore, they also offer concrete support to  the proposition made previously by 
a number of investigators that  instability waves are important noise sources in 
supersonic jets. 

1. Introduction 
I n  the companion paper (Part 1, Tam & Burton 1984) the problem of sound 

generation by instability waves of supersonic compressible two-dimensional mixing 
layers is solved by the method of matched asymptotic expansions. The purpose of 
this study is to test the validity of the theory by applying i t  to an axisymmetric 
supersonic jet and comparing the calculated results with experimental measurements. 
The experimental measurements are to be taken from the recent investigation of 
Troutt (1978) and Troutt & McLaughlin (1982). As far as is known, these investigators 
provided the only set of good-quality data showing the direct generation of sound 
by large-scale instability waves of a jet a t  moderately high Reynolds numbers. 
(High-frequency sound generated by small-scale instability waves in the initial mixing 
layer of a supersonic jet was first considered and proven theoretically and 
experimentally by Tam (197 1) andChan & Westley (1973).) Two series of their hot-wire 
and microphone data involving instability waves gently excited by a glow discharge 
mounted flush near the nozzle exit of a 2.1 Mach-number jet a t  Strouhal numbers 
0.2 and 0.4 will be used. Detailed comparison of the calculated and measured spatial 
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distribution of the excited instability wave amplitudes along the centreline of the jet 
as well as the sound-wave pressure amplitudes in the near field immediately outside 
the jet will be made. The former may be considered as a test of the accuracy of the 
inner solution or the instability-wave solution. Whereas the latter could be regarded 
as a verification of the validity of the outer solution. I n  the study of Troutt (1978) 
and Troutt & McLaughlin (1982) the experiment was, unfortunately, carried out in 
an anechoic room of somewhat limited size. Because of this, only flow-field and 
near-pressure-field data were acquired with sufficient precision. Accurate far-field 
noise data, which can only be obtained by microphones located at distances, a t  least, 
150 to 200 jet diameters away from the jet nozzle exit, are not available for 
comparison with calculation. 

In applying the theory of Part  1 to  the case of a round jet, the axisymmetric 
geometry of the problem leads immediately to solutions involving Hankel functions 
of complex order. Thus some of the terms of the asymptotic expansions may, on a 
first glance, appear to be very complicated. However, when the procedure developed 
in Part  1 is followed, the whole analysis can be carried out with no special difficulty. 
Only the algebra becomes rather messy and somewhat complicated. One major 
difference between the axisymmetric jet and the two-dimensional mixing-layer 
problems, aside from the appearance of very involved special functions, is that the 
asymptotic expansions now consist of logarithmic terms. The lowest order of these 
terms has the form E In E ,  which is familiar in many singular perturbation problems. 
As a result, the gauge functions of the inner expansion can no longer be taken as 
powers of E ,  but must be determined as a part of the matching process (see e.g. Van 
Dyke 1975). 

Before proceeding to compare the present theory of sound generation by linear 
instability waves and experiments, one question of considerable importance which 
one must ascertain is how important are nonlinear effects. I n  the experiment of Troutt 
(1978) and Troutt & McLaughlin (1982) an effort was made to keep the excitation 
level introduced by their glow discharge near the jet nozzle exit very small. This in 
effect minimizes the contribution of flow nonlinearities. In  the present problem, 
nonlinearities may be divided into nonlinear interaction between the excited instability 
waves and the mean flow, and the nonlinear self-interaction of the instability waves. 
The former leads to a change in the mean-flow distribution (or profile) due to the 
presence of the waves. This in turn modifies the propagation characteristics of the 
instability waves. Nonlinear effects of this kind will be taken into account in the 
present study by using the measured mean-flow profiles in the presence of the excited 
instability waves as an input to the calculation. In  other words, the instability waves 
are linear perturbations superimposed on the forced mean flow. The effects of 
nonlinear self-interaction of the instability waves will be neglected in this paper. One 
important consequence of such self-interaction is the generation of harmonics. 
Experimental measurements by Troutt and Troutt & McLaughlin indicate that 
harmonics are indeed present in the flow near the nozzle exit. It is possible, however, 
that these harmonics are generated by the nonlinear excitation process rather than 
by the nonlinear self-interaction of the excited instability wave. This belief is based 
on the observation that the amplitudes of these harmonics decrease rapidly to an 
insignificant value over a short distance downstream of the nozzle exit while the 
excited fundamental wave is still growing in amplitude spatially. I n  any case, in the 
neighbourhood where the excited instability wave attains its maximum amplitude, 
and therefore is most effective in sound generation, the relative amplitudes of the 
harmonics seem to be very small. Hence as a first approximation the nonlinear effect 
of self-interaction will be completely ignored in the calculation. In  connection with 
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& Core region Transition region+ Developed region 

FIGURE 1.  Instability waves and their sound field of an axisymmetric jet. 

the question of nonlinear effects it is worth while to point out that the spatial growth, 
peaking and decay of the amplitude of an instability wave in the flow direction of 
a jet are controlled primarily by the local linear properties of the wave. These linear 
propagation characteristics of the waves are determined by the local mean-flow 
profile. The spatial change of the mean-flow profile if a jet in the downstream direction 
is the main factor that  determines the spatial distribution of the wave amplitude. The 
fact that the wave only attains a finite amplitude is not due to a nonlinear saturation 
effect as in the case of Taylor vortices or BBnard cells. For waves of moderate 
amplitudes, nonlinearity is of only secondary importance in controlling their growth 
or decay in jets and mixing layers. 

2. The physical problem and the inner solution 
We consider the spatial evolution of a small-amplitude instability wave of angular 

frequency o of an axisymmetric supersonic jet as shown in figure 1. The instability 
wave and its associated acoustic field are governed by the linearized equations of 
motion for an inviscid compressible fluid. In  the following, dimensionless variables 
will be used. The length, velocity, time, density and pressure scales are Rj (the jet 
radius a t  the nozzle exit), uj (the jet exit velocity), Rj/uj, pj (the jet exit density) 
and pj  u; respectively. The mean velocity of the jet is assumed to be known. I n  the 
numerical calculation the measured velocity profiles are used. With respect to a 
cylindrical coordinate system (x, r ,  6) centred at the nozzle exit and the corresponding 
velocity components (u, v,  w) as shown in figure 1, the mean flow which changes slowly 
in the flow direction may be represented analytically in the form 

where 
(2.la) 

(2.1 b ,  c) 

In  (2.1) E is the rate of spread of the mixing layer in the initial part of the jet. 
Numerically E is less than 0.1. It will be considered as the small parameter of the 
problem. s = EZ is the slow variable in the downstream direction. The mean radial 
velocity component is usually, at least, an  order of magnitude smaller than the axial 
component. As a result, it  has seldom been measured, and was not measured in the 
study of Troutt (1978) and Troutt & McLaughlin (1982). Here i t  will be calculated 
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by integrating the mean continuity equation. The numerical value of f im in ( 2 . 1 ~ )  is 
quite small and is of no great significance to the overall problem. For simplicity it 
will be regarded as a constant. The mean pressure of the jet, as in the case of 
two-dimensional mixing layers, is nearly constant and is equal to the ambient 
pressure. The condition of constancy of total temperature will be used to calculate 
the mean densityp. This is agood approximation for cold jets. A further approximation 
by assuming the mean static temperature and hence the density to be constant in 
the mean continuity equation of the jet used in the experiment of Troutt and Troutt 
& McLaughlin has been found numerically to have negligible effect on the computed 
instability waves. 

Since the jet flow is axisymmetric, the instability waves can be Fourier-decomposed 
into azimuthal modes. All the physical variables can therefore be represented in the 
form p ' (x ,  r ,  4, t )  = Re Ir)(r, x) exp (in4 - i d ) ]  etc., where n is an  integer and Re = the 
real part of. On factoring out the exponential dependence on 4 and t the governing 
equations for the spatial part of the solution written in cylindrical coordinates are 

av ag av av l ap  
ar ar ax ax par 

aw fiw aw in 
ar r ax pr 

au aa aa au l a p  
ar ar ax ax pax 

-iiwv+V- +v- +a- +u- = - z-, 

-iiow+fi- + - +c- = - _ p ,  

-iiwu+g- +v- +u- +G- = - :--, 

ar ar M 2 ( r  ar r 

-ap -ap 1 1avr in 
-iiwp+v- +u- + - -- + -w+ 

To construct an inner solution of (2.2) we will follow the choice of inner variables 
as discussed in Part  1. The appropriate variables are ( r ,  s), where s = ex .  The inner 
solution represents a wave propagating in an inhomogeneous medium formed by the 
mean flow of the jet. Such a wave may be written in the form (see Whitham 1974, 
chapter 11)  

I n  (2.3) a,(€), m = 0 , 1 , 2 ,  ... with 6, = 1,  are the gauge functions of the asymptotic 
expansion. These functions are to  be determined later by the process of matching 
inner and outer solutions. It turns out that  6, is equal to E in E and 6, is equal to E .  

(2.4) 

For convenience, we will denote 
-- - 44, d@) 

ds 

which is the complex wavenumber. 
Substitution of (2.3) into (2.2) and upon partitioning terms according to S,(E) ,  

m = 0 , 1 , 2 , .  .., i t  is straightforward to  find that the general mth-order equations can 
be cast into the form 

-ip(w-ati)d, = R,, ( 2 . 5 ~ )  & 
ar 
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FIGURE 2. Branch cuts in the n-plane (limit 6+0+). 

The nonhomogeneous terms R, and Q, in (2 .5)  depend on the lower-order solutions 
only. I n  particular, R,, Q,, R ,  and Q, are all equal to zero, so that the corresponding 
equations are homogeneous. 

For r > rm, on account of the mean flow ( 2 - 1 ) ,  the equations for jjo and 8o become 

( 2 . 6 ~ )  

(2 .6b )  

where p ,  is the dimensionless ambient density. Two linearly independent solutions 
of (2 .6 )  are 

Here H i ) (  ) and HE)( ) are the nth-order Hankel functions of the first and second 
kind, and 

To facilitate the process of matching, branch cuts of h are chosen such that 
-in < arg [h(a)] < in in the entire a-plane. This is shown in figure 2. 

h(a) = (a2-p, M2w2)t. (2.8) 

Let 

be two linearly independent solutions of (2 .5 )  for m = 0 such that for r > rm they are 
identically equal to  the two solutions of (2 .7 ) .  In  terms of these functions the 
zeroth-order or the one-term inner solution may be expressed as 
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I n  (2.9) the amplitude functions A,($) and B,(s) are arbitrary a t  this stage. The only 
constraint on this solution is that  it must satisfy the finiteness condition at r = 0. 
That is, the functions 
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(2.10) 

3. The outer solution 
The outer solution of (2.2) which describes the acoustic near and far field is to be 

valid in the region r > r,. The appropriate outer variables are ( F ,  s) (see Part l ) ,  where 
v = er. In terms of these outer variables, (2.2), for small E ,  becomes 

A general solution of (3.1) satisfying the boundedness or radiation condition for large 
f may be constructed by first applying a Fourier transform to the variable s. Then 
by eliminating all other dependent variables in favour of liz, the transform of u,  it  
is straightforward to find that the equation to  be solved is 

- (k2 -Pm M2w2 +- " 2 )  ti = 0, (3.2) 
6 2  r"; 

where Ic is the Fourier transform variable. I n  Appendix A, it is shown how an exact 
solution of (3.2) satisfying the outgoing wave or boundedness condition as p +  00 can 
be found in terms of a Hankel function of complex order for the axisymmetric wave 
mode (n  = 0). For the higher-order wave modes, a similar solution valid to order e2 
for all ? > O ( E ' - ' / ~ ) ,  where N is a large positive number, can also be found. By means 
of this solution the outer solution to order e2 may be written as an inverse Fourier 
transform as follows. Here only the expression for the pressure p will be given 
explicitly : 

x Hp)(i(E2k2-p, M202): ( r " - ~ ~ p ,  M 2 ~ 2 , ) i / e ) ]  eiks dk ,  (3.3) 

(3.4) 
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Branch cut k 
Integration contour 

p Z M ( o  + i6) 

Re (17) 
-pLM(w +is) 

Trajectory of the 
saddle point 

FIQURE 3. Branch cuts, saddle-point trajectory and integration contour in the complex 7-plane. 

In (3.3) H p ) (  ) is the vth-order Hankel function of the first kind. To ensure that the 
boundary condition a t  r+ co is satisfied, the branch cuts of the square-root function 
A(7) = (q2 -pa ,  M2w2)4, where 7 = ~ k ,  in the argument of the Hankel function will be 
taken such that -$IT < arg [A(7)]  < $IT in the entire complex q-plane. The actual 
configuration of the branch cuts is shown in figure 3. The amplitude function A(s, 6 )  

in (3.4) is arbitrary a t  this time. It will be determined by the matching process to 
be carried out in 54. 

4. Matching of solutions 
We will now follow the steps of Part  1 and match the solutions according to  the 

intermediate matching principle of Van Dyke (1975) and Cole (1968). The appropriate 
intermediate variables (see Part  1 )  are (r", s), where 

(4.1) 

For convenience, N in (4.1) will be taken as a large positive number. I n  the case of 
the axisymmetric instability-wave mode (n = 0), (3.3) and (3.4) give the exact outer 
solution to  all powers of E as e+ 0. Thus they also represent the intermediate solution. 
For the higher-order wave modes it can readily be shown that the intermediate 
solution to order 2 for r" 2 O(1) is the same as that given by (3.3) and (3.4) if a change 
of variable from F to is made. Thus to order e2 with r" and s fixed the 
intermediate solution is 

7 = E'lNr. 
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I n  writing down (4.2) and (4.3) from (3.3) and (3.4), in addition to the change of 
variable from p ro ?, a change of integration variable from k to T,I = Ek has also been 
made. We will a t  this time expand the as yet unknown amplitude function B ( s ,  E )  

as an asymptotic series in the form 

(4.4) 

Now with y fixed the integral of (4.3) may be evaluated asymptotically in the limit 
s+O by the saddle-point method (see Dingle 1973). This yields, as in Part 1 ,  an 
asymptotic expansion of g ( y / s ,  E). On substituting this asymptotic expansion into 
(4.2) and keeping the intermediate variables s and ?fixed, the integral on the right-hand 
side may again be evaluated by the saddle-point method. This gives the intermediate 
limit of the outer solution. To order E the asymptotic expansion, denoted by a 
superscript 0, is 

A(s, E )  = Bo(s) + eB1(s) + O ( E ) .  

c 

1 ( n =  O ) ,  
0 otherwise. a,, = 

The one-term inner solution is given by (2.9) and (2.3). The intermediate limit of 

limpi(?, s )  - e ie ( s )~EIAo(s )H~) ( ihs - l~N?)+Bo(s )  H ~ ) ( ~ A E - ~ / ~ ? ) ] .  (4.6) 
E + O  8 fixed 

On comparing (4.5) and (4.6) i t  is easy to verify that matching of solutions in the 
intermediate limit to order unity requires 

this solution, designated by a superscript i, is 

and 

Now with B, = 0 the boundedness condition of (2.10) will, in general, not be 
satisfied unless the remaining unknown function a ( s )  takes on special values. In  other 
words, the one-term inner solution is an eigenvalue problem with a as an eigenvalue. 
As in Part 1 we will only consider the eigenvalue corresponding to an instability wave 
of the jet flow. 

To match the solutions to higher order it is noted that the next two higher-order 
terms in (4.5) are of order e lns  and E respectively. This suggests that the gauge 
functions Sl(e) and cY2(e) of the inner expansion (2 .3)  should be chosen as 

S1(e) = elne, a,(€) = E .  (4.9) 
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With this choice of 6, the equations for @1 and 6, as given by (2.5) are identical with 
those for @, and 6,. Thus (lil, 6,) must have the same form of solution as @,, 6,). I n  
order that  the inner solution, to order s h e ,  matches that of (4.5) in the intermediate 
limit, it  is straightforward to verify that the appropriate inner solution for @l,61) 
is 

(4.10) 

The governing equations for (&,6,), the s-order term, of the inner solution, are 
(2.5a, b) with m = 2 .  These equations are non-homogeneous. The non-homogeneous 
terms R, and Q, are linear functions of A,  and Ah. If these non-homogeneous 
equations are considered as a system of first-order differential equations, the solution 
can readily be constructed by means of the method of fundamental matrix (see Boyce 
& DiPrima 1977, chap. 7) .  The fundamental matrix '4 and its inverse '4-l are 

(4.11) 

where W(cl ,  c,) is the Wronskian. In  the present problem it is easy to show that W 
is given by 4(w - aa) 

np, w2r ' wc1, C2) = - 

In  terms of V' and '4-l the solution for @ z ,  8,) may be written as 

(4.12) 

(4.13) 

For r > r ,  the functions in 'Ip1, R, and Q, are expressible in terms of Hankel 
functions. Thus the integrand of (4.13) involves products of Hankel functions and 
powers of r'. It turns out that  they can all be integrated in closed forms using formulas 
provided by Watson (1966) and Gradshteyn & Ryzhik (1965). By means of this 
explicit order-s inner solution, the intermediate limit of the three-term inner solution 
can be determined in a straightforward manner. Up to order s the intermediate limit 
of the inner solution is 

limp'(?, s) ~ - ei@(a)/c A,[i - (E In E) ip, W w t j , ]  Hg)(ihs-l/N?) 
E+O r ,  a fixed { 

( (E+ E(s-llN?)) Hg)(ihs-l/N?) 

(4.14) 
where 

in(2aAh + "'A,,) 
2h2 

2ia2a'A,(n2 + 2%) 
4h4 + - , 
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By comparing (4.14) and (4.5) i t  is clear that  matching of solutions to terms of 

(4.15) 
order e requires 

D = 0. (4.16) 
and 

Condition (4.15) relates A, to A ,  and A,. Condition (4.16) when written out in full 

(4.17) 
gives the equation 

The full expressions for I,(s) and I,(s) are given in Appendix B. Equation (4.17) is 
the amplitude equation for A,(s),  which after one integration yields the solution 

E = =&j, M2wV, A, an, + A,, 

dA0 I&)= +I&) A,  = 0. 

A,($) = a,exp - ‘flds . [ S,r, 1 (4.18) 

With A,(s) determined by (4.18), the complete solution of the instability wave and 
its associated sound field of a supersonic axisymmetric jet to the lowest order is found. 
Numerical results of this solution (both the inner and the outer solution) will be 
compared with experimental measurements in Q 6. 

5. The near pressure field and the directivity of sound in the far field 
I n  the region outside the jet flow, i.e. r > r,, the near-field solution associated with 

the instability wave of the nth azimuthal mode of the jet is given by equations (3.3) 
and (3.4) of the outer solution. To the lowest order, the formula for the near pressure 
field may be simplified to 

co 
p ( r ,  x, $, t )  = J g(7) Hg)(ih(v) r )  ei(gz+n$--wt) d 7, (5.1) 

-02  

(5.2) 

where A(7)  = ( y 2 - p , M 2 w 2 ) ~ .  By means of (5.1) i t  is easy to find that the root- 
mean-square intensity of pressure fluctuations associated with an instability wave 
in the near field is equal to 

(5.3) 

Not all the near-field pressure fluctuations are radiated into the far field as sound. 
To find the power of sound emitted, i t  is advantageous to  use a spherical coordinate 
system ( R , ~ , t l )  centred a t  the nozzle exit of the jet with the polar axis aligned in 
the direction of flow. These spherical coordinates are related to the cylindrical 

(5.4) 
coordinates (x, r ,  $) by 

It: = R cosx, = Rsinx. 

In  terms of R, x and $ (5.1) becomes 

For large R the Hankel function may be replaced by its asymptotic form. This gives 
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Now the integral on the right-hand side of (5.6) can be evaluated by the method of 
stationary phase (see Tam & Morris 1980). The stationary-phase point in this case 
is located a t  7 = p i  Mw cosx in the ?-plane. On carrying out the stationary-phase 
integration we obtain 

Finally, from (5.7) the following formula for the sound power D ( 2 )  radiated in 
direction x per unit solid angle by an excited instability wave (see Tam 1975) may 
be derived: 

6. Numerical results and comparison with experiment 
I n  this section numerical results of the inner and outer solutions corresponding to 

the excited instability waves and their associated noise fields of a cold, nearly 
perfectly expanded axisymmetric supersonic jet of Mach number 2.1 will be presented. 
These theoretical results will then be compared with the experimental measurements 
of Troutt (1978) and Troutt & McLaughlin (1982). In  the present calculation the 
measured mean-velocity profiles under excitation will be used in determining the 
propagation characteristics of the instability waves. As discussed before, this is a 
relatively simple way of accounting for the effects of nonlinear interaction between 
the excited instability waves and the mean flow. Mean-flow data of Troutt’s 
experiment at a forcing frequency corresponding to  a Strouhal number Xt = 0.2 have 
been reported by McLaughlin, Seiner & Liu (1980) and Troutt & McLaughlin (1982). 
For convenience the jet will be divided into three regions. I n  each region the measured 
mean-flow profiles will be approximated by simple analytical functions. These regions 
are the core, the transition and the developed regions as shown in figure 1. I n  the 
core region, the mean flow is uniform in the central part of the jet. Surrounding this 
uniform core is a mixing layer with a velocity profile which can be approximated 
closely by a half-Gaussian function, as has been demonstrated by Troutt & McLaughlin 
(1982). On taking these facts into consideration, the mean velocity in this part of the 
jet will be approximated by 

In (6.1) h(x)  is the radius of the uniform core and b(x) is the half-width of the annular 
mixing layer, i.e. the radial distance from the outer edge of the uniform core to  the 
half-velocity point as shown in figure 4. The axial distribution of b(z )  measured by 
Troutt taken from McLaughlin et al. (1980) interpolated by a cubic spline curve will 
be used. The core region extends over the first five diameters of the jet. Within this 
region of the jet the same set of data by Troutt reveals that  h(x)  and b(x)  are related 
in such a way that the total axial momentum flux of the jet is practically a constant. 
This property of momentum-flux conservation is well known in most free shear flow. 
Here i t  will be employed to provide a continuous axial distribution of h in the 
subsequent calculation. 

The developed region of Troutt’s Mach-number 2.1 jet begins at about eight 
diameters downstream of the nozzle exit. I n  this region the mean flow evolves 

10 F L X  1% 
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I-- uc __I I-- uc -+ 
(a 1 (b  1 

FIQURE 4. Axial mean-velocity profile in (a )  the core (u, = 1) and the transition regions, 
and ( b )  the developed region of the jet. 

gradually into a self-similarity form. To a good approximation this form may be 
analytically represented by a two-parameter Gaussian function : 

where uc(x) is the centreline velocity of the jet and b(x) is the half-width of the velocity 
profile. In  this region the principle of conservation of axial momentum flux is again 
applicable. Once more i t  will be used to  relate the two parameters uc(x)  and b(x). This 
relationship has been tested against the measurements of Troutt. Very favourable 
agreement (see figure 6) is found. As in the core region, Troutt's measured values of 
b(x) interpolated by a cubic spline curve will be used as an input to the computation 
of the mean-flow velocity given by (6.2). 

The transition region is where the mean flow of the jet changes smoothly from the 
core flow to a fully developed similarity flow. I n  this region the form of the mean 
velocity profile should match smoothly to those of (6.1) and (6.2) a t  the beginning 
and the end of the transition region respectively. Here the following mean-axial- 
velocity profile containing three parameters will be used : 

It is easy to show if the values of the three parameters u,, b and h are chosen 
appropriately, (6.3) can readily be made to satisfy the smooth-joining requirement. 
To provide further smoothness in the overall mean-velocity profile the x-dependences 
of the three parameters uc(x), b(x) and h(x) are assumed to be in the form of a cubic 
spline. The coefficients of the spline curve are chosen such that, at where the velocity 
profiles (6.1)-(6.3) are joined together, not only the parameters uc, b and h are 
continuous but their first derivatives in x are also continuous. This degree of 
smoothness is needed to  guarantee a genuine slowly varying mean flow as required 
by the theory. 
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FIGURE 5. Axial distribution of mean-velocity profile parameter for an excited (St = 0.2) Mach- 
number 2.1 supersonic jet: ., Troutt's measurements from McLaughlin et al. (1980); -, 
spline curve fit. 
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Axial distribution of mean centreline velocity for an excited (St = 0.2) Mach-number 
supersonic jet: a, Troutt (1978) ; -, from conservation of momentum flux. 

Away from the jet, say a t  7 > h+3b, the mean axial velocity is negligibly small 
a.nd has no dynamical significance as far as noise generation by instability waves is 
concerned. Therefore in the numerical computation ii will be taken to be zero outside 
the region 7 = h+ 3b (i.e. r ,  = h+ 3b) along the entire length of the jet. Figure 5 shows 
the empirically fitted axial distribution of b over the first twenty diameters of the 
jet based on the measured data of Troutt (see McLaughlin et al. 1980). The 
corresponding distribution of centreline velocity uc of the three empirical velocity 
profiles (6.1)-(6.3) as determined by the principle of conservation of momentum flux 
and spline curve fit is shown in figure 6. As can be seen, the calculated value of u, 
agrees favourably with the measurements of Troutt (1978) over most of the 
noise-producing region of the jet. 

10-2 
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6.1. Calculation of instability waves and comparison with experiment 
To compute the spatial distribution of the physical variables associated with an 
instability wave of a fixed Strouhal and mode number, the first step is to calculate 
the local eigenvalue or the complex wavenumber a($) .  Mathematically the eigenvalue 
problem for a(s)  consists of finding a solution ([p,G) to (2.5)’ which for r > r ,  is 
identically equal to (2.7a) and remains bounded as r+O. Numerically the simplest 
way to solve this eigenvalue problem is to integrate (2.5) over the range r = 0 to r = rm 
in two parts. The first part of the numerical integration starts a t  r ,  using (2.7) as 
the starting value. The integration is to be performed in the direction towards the 
jet axis and continued until a value of r ,  say r = Re ( re ) ,  near the critical point of 
the differential equation ( r ,  is given by w-att (r , )  = 0) is reached. The second part 
of the numerical integration starts at a point very close to r = 0. Here the starting 
solution can be determined by solving equation (2.5) using the method of Frobenius 
series. For the problem under consideration it can be shown that only one of the series 
solutions expanded about r = 0 is bounded a t  r = 0. The bounded solution is the 
correct solution to initiate the integration near the jet axis. On reaching the point 
r = Re (T,) two sets of values for (cf, e) are now available. They are, however, unequal 
unless the value of a used in the calculation is an eigenvalue. In other words, if we 
form the difference of these two solutions a is the root of this difference function. The 
root of this difference function can now be found iteratively by a variety of standard 
numerical techniques (e.g. Newton’s iteration method). In the present numerical 
computation, the iteration procedure is allowed to continue until the estimated error 
of the calculated eigenvalue is no more than half a percent. One-half of a percent is 
the upper error bound in all our numerical calculations. We believe this should be 
adequate for comparison with experimental measurements. 

In the region sufficiently far downstream from the jet exit the excited wave would 
no longer grow in amplitude. Instead, it is damped. For damped waves two 
modifications are needed in implementing the above numerical integration scheme. 
First of all, the present model assumes an inviscid fluid. As has been discussed by 
Tam & Morris (1980), the correct solution for inviscid damped waves is to be obtained 
by analytic continuation of that of the unstable wave in the complex r-plane. 
The integration contour must be deformed around the critical point r = r,. This can 
be carried out easily by using a rectangular deformed contour (see Tam 1975; Tam 
& Morris 1980). For the Mach-number 2.1 supersonic jet under consideration, the 
phase velocities of the instability waves (at St = 0.2 and 0.4) are supersonic relative 
to the ambient speed of sound. This is true even when these waves reach the damped 
region of the jet. They are therefore ‘damped supersonic waves’. Hence, in accordance 
with 5 7 of Part 1 ,  the value of a in the second Riemann sheet of the complex a-plane 
should be used to evaluate the value of h(a) in the starting condition of (2.7). With 
these modifications the numerical procedure for the determination of the local 
eigenvalue a as described above can again be carried out. 

After the complex wavenumber a of a fixed value of x is determined numerically 
to an acceptable degree of accuracy, the eigenfunction is computed. The eigenfunction 
is used to evaluate the two integrals I ,  and I ,  of (4.18). The full analytical expressions 
of these integrals are given in Appendix B. For damped waves these integrals are to 
be integrated over the same deformed contour used to determine the eigenvalue a 
and the eigenfunction (see Tam & Morris 1980). The above steps of computation are 
repeated for a preselected set of appropriately spaced values of x. These calculated 
values of 12/11 are then used to determine numerically the integral and the 
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exponential factor of (4.18). I n  this way the spatial distribution of the amplitude 
function A, for a given wave mode and Strouhal number, save for a multiplicative 
constant A^,, is known. Here the spatial variation of A, provides the non-parallel-flow 
correction, both in amplitude and in phase, for the instability-wave solution. 

I n  the experiment of Troutt (1978) and Troutt & McLaughlin (1982) instability 
waves were excited by a single point glow discharge mounted flush near the nozzle 
exit. This method of excitation is incapable of producing individual azimuthal wave 
modes. Instead a combination of several instability-wave modes are generated. The 
measurements of Troutt & McLaughlin show, however, that the excited motion of 
the jet is dominated by the contributions of the three lowest-order unstable azimuthal 
wave modes. They are the axisymmetric mode (n  = 0) and the left- and right-hand 
helical modes (n  = & I ) .  To separate these modes, near-field microphone measure- 
ments on a circle of radius equal to three jet diameters were taken. The centre of the 
circle is located on the jet axis and is twelve jet diameters downstream of the nozzle 
exit. These measurements permit Troutt and McLaughlin to determine the relative 
amplitudes and phases of the waves in their jet. This information is used in the present 
calculation to calculate the relative values of the unknown initial complex amplitudes 
A^, of the three excited instability waves. By linearly combining the three waves with 
the corresponding relative initial amplitudes and phases, the excited instability wave 
motion at any point in the jet is found except for one remaining unknown 
multiplicative constant. 

As has been noted above, three dominant modes of instability waves are generated 
when a jet is excited by a point glow discharge. Because of the phase differences 
between the axisymmetric (n = 0) and the flapping modes (n = +_ 1 )  the resulting 
motion of the jet is asymmetric in the two halves of the plane containing the axis 
of the jet and the point glow discharge. I n  the experiment of Troutt and McLaughlin 
all the measurements were taken in the half-plane on the same side as the point glow 
discharge. In  comparing the present calculation with their experimental measure- 
ments the numerical results on this same half-plane will be used. Figure 7 shows the 
calculated axial distribution of centreline mass velocity fluctuation rn),,, a t  an 
excitation Strouhal number of 0.4. Also plotted in this figure are the measurements 
of Troutt & McLaughlin (1982). These measurements are, however, not given in 
absolute magnitude but are non-dimensionalized with respect t o  the measured value 
at one point. That is to say, only the relative distribution of the centreline mass 
velocity distribution is available for comparison with calculation. Therefore in figure 
7 ,  for the purpose of comparing theory and experiment, the unknown multiplicative 
constant of the calculated distribution of mass-velocity fluctuation has been chosen 
such that the peak value is the same as that of the measurements. As can be seen, 
there is good general agreement between the calculated and the measured results. The 
calculated curve peaks a t  nearly the same location as the measured data. I n  addition, 
the decay part of the calculated root-mean-squared mass-velocity distribution 
matches very well with Troutt’s experimental observations. Figure 8 shows a similar 
comparison between the calculated and the measured results at a Strouhal number 
of 0.2. Again there is good qualitative agreement in general. However, unlike the 
Strouhal-number 0.4 case the agreement is not as good. As can be seen in this figure, 
the computed curve peaks about four jet radii upstream of the measured data points. 
It implies that  the noise source of the calculated results is located somewhat upstream 
of the measured data. This difference should be borne in mind when comparing the 
calculated and the measured near pressure field later on. At the present time i t  is 
not possible to determine the exact cause of this difference. There are several 
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FIGURE 7 .  Comparison of measured (0, Troutt & McLaughlin 1982) and calculated (-) axial 
distribution of centreline mass-velocity fluctuation of a Mach-number 2.1 jet excited at St = 0.4. 

xIRj 

FIGURE 8. Comparison of measured (0,  Troutt & McLaughlin 1982) and calculated (-) axial 
distribution of centreline mass velocity fluctuation of a Mach-number 2.1 jet excited at St = 0.2. 

possibilities. As no experimental error estimates are provided by Troutt & McLaughlin 
(1982), it  becomes difficult to judge which possibility is more likely. Despite this 
difference, the overall agreement between observations and predictions appears to 
be reasonably good. This is especially true in view of the fact that the calculation 
is practically free from any adjustable parameter. 
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FIGURE 9. Calculated wavenumber spectrum IG(7)l for St = 0.4: 

-, mode n = 0; -----, mode n = 1. 

6.2. Near-field pressure-level contours and comparison with experiment 

The near pressure field associated with an instability wave of the nth mode is given 
by (5.1) and (5.2). In (5.2) the amplitude function A,, and phase function 8 are the 
same as those of the excited instability wave. They are, except for a multiplicative 
constant, completely determined. To compute the near-field pressure contours, the 
integral of (5 .2)  is first evaluated by the method of fast Fourier transform (FFT) (see 
e.g. Cooley, Lewis & Welch 1967, 1969; Brigham 1974). The transform function g ( T )  
gives the complex-wavenumber spectrum of the pressure fluctuations in the near and 
far field. Figures 9 and 10 show the calculated wavenumber spectra of the excited 
jet at  Strouhal numbers 0.4 and 0.2 for the n = 0 and n = 1 modes. The point T~ 
(yC = p i  M u )  in these figures is the branch point of the function A(?)  of figure 3. The 
physical significance of this point is that wave components to the left of this point 
propagate with supersonic phase velocities relative to the ambient sound speed, while 
those on the right have subsonic phase velocities. Of all these wave components only 
those wave components with supersonic phase velocity radiate into the far field. The 
direction of radiation of each wave component is given by (5.8). As can be seen in 
figures 9 and 10, the wave spectrum of each mode is dominated by a peak located 
in the supersonic region. This indicates that a sizeable fraction of the pressure 
disturbances in the near field would radiate into the far field as sound. Moreover, it 
infers that the near-field pressure-level contours and the far-field directivity are highly 
directional. These are the characteristics of supersonic jet noise. 

To compute the near-field pressure-level contours (contours of constant root- 
mean-squared pressure fluctuations) the Fourier integral of (5.1) is evaluated 
numerically again by means of the method of fast Fourier transform. For a given 
radial distance r the fast Fourier transform generates a set of values of p at regular 
intervals of 2. To cover the entire near field it is therefore necessary to repeat the 
FFT calculation over a set of regularly spaced values of r .  In this way, values of the 
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FIGURE 10. Calculated wavenumber spectrum (G(T/)) for St = 

-, mode n = 0; - - - - - ,  mode n = 1. 
0.2: 

xlRj 

FIQURE 11. Calculated near-field sound-pressure-level contours associated with an instability 
wave of St = 0.2, mode n = 0 (SPL dB Re 2 x N/m2). 

complex pressure function p at a set of rectangular grid points covering the near field 
are determined. Contours of constant pressure amplitudes can then be constructed 
by interpolation between the grid points. I n  the present calculation this step was 
carried out by a computer subprogram. Figure 11 illustrates the calculated near-field 
pressure-level contours associated with the St = 0.2, mode n = 0 instability wave of 
the jet. The magnitudes of the contours are labelled in decibel (dB re 2 x 10-5 N/m2). 
The lobed appearance of this figure indicates strong noise radiation in a direction a t  
approximately 40' from the jet axis. Figure 12 shows a similar plot of the calculated 
near-field pressure-level contours for the n = 1 mode a t  the same Strouhal number. I n  
this case the lobed characteristic of the contours is not as apparent. This means that 
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FIQURE 12. Calculated near-field sound-pressure-level contours associated with an 
wave of St = 0.2, mode TL = 1 (SPL dR Re 2 x N/m2). 
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FIGURE 13. Near-field sound-pressure-level contours for jet excited at St = 0.4:  (a )  calculated; 
( b )  measured (Troutt & McLaughlin 1982) (SPL dB Re 2 x 1W5 N/m2). 
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FIGURE 14. Near-field sound-pressure-level contours for jet excited at St = 0.2: (a) calculated; 
( b )  measured (Troutt & McLaughlin 1982) (SPL dB Re 2 x N/m2). 

sound would be radiated with more or less uniform intensity by this instability-wave 
mode over most of the angles lying within a cone of 35O measured from the jet 
axis. 

I n  the experiment of Troutt & McLaughlin (1982) three dominant instability wave 
modes are excited simultaneously. Therefore, to  compare the calculated results with 
experimental measurements the complex pressure function of (5.1) for the three modes 
are added together (the relative phases of these waves are important to  the final 
results) and the sum is used to determine the pressure contour field. Figure 13 (a )  shows 
the calculated near-field pressure-level contours of the jet excited a t  a Strouhal 
number of 0.4. The corresponding experimental measurements obtained by Troutt 
(1978) and Troutt & McLaughlin (1982) is given in figure 13 ( b ) .  Since the calculated 
results have an unknown multiplicative constant, the absolute pressure level cannot 
be predicted. I n  figure 13 (a)  the magnitude of the constant is chosen so that the cal- 
culated pressure level a t  the point marked by a black circle is 148 dB, the same as the 
corresponding point in figure 13(b). On comparing these two figures i t  is clear that  
there is excellent agreement. The agreement between the calculated and the measured 
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150 dB and 148 dB contours is nearly perfect. The lobed nature of the contours, the 
direction of the lobe and the spacings of the contours are correctly predicted. Fig- 
ures 14 (a,  b )  show a similar comparison between the calculated and the measured 
near-field pressure level contours a t  a Strouhal number of 0.2. As pointed out in 56.1, 
the calculated instability wave peaks upstream of the measured data. This implies 
that the field shape of the calculated near pressure field would be displaced upstream 
relative to  Troutt and McLaughlin’s observations. To compare with the measure- 
ments shown in figure 14(b) the entire calculated near field of figure 14(a) has been 
moved about four jet diameters downstream. Again the absolute intensity of the pres- 
sure is adjusted as before so that the pressure level at the point marked by a black 
circle is 148 dB matching the value of the corresponding point in figure 14(b). With 
this adjustment, which reflects solely the discrepancy in calculating the instability 
waves at this Strouhal number, there is again excellent agreement between the cal- 
culated results and measurements. The direction of peak sound radiation as defined 
by the lobe of the calculated contours and that of the measurements are practically 
the same. The field shape and the relative spacings of the contours of the two 
figures are again in aimost total agreement. 

All in all, i t  seems reasonable to conclude that very favourable agreements between 
theoretical calculations based on the method of matched asymptotic expansions and 
experimental measurements are found. The compared results include the predicted 
instability-wave amplitude distribution using the inner solution and the near-field 
pressure-level contours using the outer solution. These very favourable agreements 
strongly suggest that  the method of solution developed in the Part  1 paper is indeed 
valid. Furthermore, they also offer concrete support to the proposition made 
previously by a number of investigators that instability waves are important noise 
sources of supersonic jets (at least, for those of low to moderately high Reynolds 
numbers). 

7. Concluding remarks 
I n  this paper the method of solution developed in Part 1 (Tam & Burton 1984) 

is applied to the study of instability waves and their associated sound field of 
axisymmetric supersonic jets. To test the validity of the theory, the calculated results 
of a Mach-number 2.1 cold supersonic jet are compared with the experimental 
measurements of Troutt (1978) and Troutt & McLaughlin (1982). Two series of 
comparisons at excitation Strouhal numbers 0.4 and 0.2 have been carried out. Very 
favourable agreements are found both in the calculated instability-wave amplitude 
distribution (the inner solution) and the near pressure field level contours (the outer 
solution) in each case. These very favourable comparisons with measurements (which 
have not been obtained before in jet-noise research) clearly indicate that the physical 
model used and the method of solution developed are valid. 

In closing i t  is worthwhile to point out that the method developed in this and in 
Part 1 for predicting the near pressure field of a jet is somewhat unique. At the present 
time there is no other known method in the literature that allows one to  calculate 
the unsteady near pressure field of supersonic jets. To be able to predict the far-field 
noise of a jet requires merely a moderately accurate model of the noise sources inside 
the jet. This is because only a fraction of the fluctuating pressure components 
associated with the unsteady motion of the jet radiates into the far field. I n  the near 
field, however, both the non-propagating hydrodynamic components as well as the 
radiated sound are important. Hence to predict the near field both of these 
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components must be calculated correctly. This in turn requires a correct modelling 
and solution of the unsteady components of the flow. From this standpoint i t  is 
therefore not surprising that near-field sound-pressure prediction has not been very 
successful before. 

This work was supported by the National Aeronautics and Space Administration 
under grant NAG 3- 182. 

Appendix A 

the other dependent variables are 
I n  this appendix the solution of (3.2) is discussed. The relationships between .1z and 

Let y = P-e4pm M 2 8 ?  be a new independent variable, then (3.2) becomes 

8% 1 + iepm M2w8, ac k2 - p m ( w / e ) 2 W  -+ -4 4y aY2 Y a Y  
(A 2) 

For the axisymmetric wave mode (n = 0) the right-hand side of (A 2) is identically 
equal to  zero. For the higher-order modes i t  is straightforward to show that the term 
on the right-hand side is of order e2 compared with the term n23/4y2 on the left-hand 
side of the equation for y 2 O(e2- l fN) .  Upon neglecting this order-e2 term, it is easy 
to find that the solution of (A 2 )  may be expressed in terms of a Hankel function of 
complex argument as 

c = y-?icPm M2oumHr)(i(kz$ - p a  02M2 1 !i Y /  t e ) 3  (A 3) 

where v = (n2-e2p& M4w2@&)f. Note that this solution is exact in the case of the 
axisymmetric (n = 0) instability-wave mode. 

Appendix B 
The functions I ,  and I ,  of (4.17) are 

where 6 = w - aii. 
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